Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network

نویسندگان

چکیده

Plant diseases are a severe cause of crop losses in the agriculture globally. Detection plants is difficult and challenging due to lack expert knowledge. Deep learning-based models provide promising ways identify plant using leaf images. However, need larger training sets, computational complexity, overfitting, etc. major issues with these techniques that still be addressed. In this work, convolutional neural network (CNN) developed consists smaller number layers leading lower burden. Some augmentation such as shift, shear, scaling, zoom, flipping applied generate additional samples increasing set without actually capturing more The CNN model trained for apple publicly available dataset PlantVillage Scab, Black rot, Cedar rust leaves. rigorous experimental results revealed proposed well fit achieves 98% classification accuracy. It also evident from it needs lesser amount storage takes execution time than several existing deep models. Although, there exist disease detection comparable accuracy, but resources. Therefore, highly suitable deploying handheld devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks

Mosaic, Rust, Brown spot, and Alternaria leaf spot are the four common types of apple leaf diseases. Early diagnosis and accurate identification of apple leaf diseases can control the spread of infection and ensure the healthy development of the apple industry. The existing research uses complex image preprocessing and cannot guarantee high recognition rates for apple leaf diseases. This paper ...

متن کامل

Image Manipulation Detection using Convolutional Neural Network

Using various methods, an image manipulation can be done not only by the image manipulation itself, but also by the criminals of counterfeiters for the purpose of counterfeiting. Digital forensic techniques are needed to detect the tampering and manipulation of images for such illegal purposes. In this paper, we present an image manipulation detection algorithm using deep learning technology, w...

متن کامل

Automated Edge Detection Using Convolutional Neural Network

The edge detection on the images is so important for image processing. It is used in a various fields of applications ranging from real-time video surveillance and traffic management to medical imaging applications. Currently, there is not a single edge detector that has both efficiency and reliability. Traditional differential filter-based algorithms have the advantage of theoretical strictnes...

متن کامل

Aerial Images and Convolutional Neural Network for Cotton Bloom Detection

Monitoring flower development can provide useful information for production management, estimating yield and selecting specific genotypes of crops. The main goal of this study was to develop a methodology to detect and count cotton flowers, or blooms, using color images acquired by an unmanned aerial system. The aerial images were collected from two test fields in 4 days. A convolutional neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3232917